170 research outputs found

    Bridging the Flexibility Concepts in the Buildings and Multi-energy Domains

    Get PDF
    paper aims to stimulate a discussion on how to create a bridge between the concept of flexibility used in power and energy systems and the flexibility that buildings can offer for providing services to the electrical system. The paper recalls the main concepts and approaches considered in the power systems and multi-energy systems, and summarises some aspects of flexibility in buildings. The overview shows that there is room to strengthen the contacts among the scientists operating in these fields. The common aim is to identify the complementary aspects and provide inputs to enhance the methodologies and models to enable and support an effective energy and ecologic transition

    Thermal energy storage for grid applications: Current status and emerging trends

    Get PDF
    Thermal energy systems (TES) contribute to the on-going process that leads to higher integration among different energy systems, with the aim of reaching a cleaner, more flexible and sustainable use of the energy resources. This paper reviews the current literature that refers to the development and exploitation of TES-based solutions in systems connected to the electrical grid. These solutions facilitate the energy system integration to get additional flexibility for energy management, enable better use of variable renewable energy sources (RES), and contribute to the modernisation of the energy system infrastructures, the enhancement of the grid operation practices that include energy shifting, and the provision of cost-effective grid services. This paper offers a complementary view with respect to other reviews that deal with energy storage technologies, materials for TES applications, TES for buildings, and contributions of electrical energy storage for grid applications. The main aspects addressed are the characteristics, parameters and models of the TES systems, the deployment of TES in systems with variable RES, microgrids, and multi-energy networks, and the emerging trends for TES applications

    33714 Palisaded neutrophilic and granulomatous dermatitis in the setting of SRSF2-mutated chronic myelomonocytic leukemia: Case report and review of the literature

    Get PDF
    Palisaded neutrophilic and granulomatous dermatitis (PNGD) is a rare cutaneous histopathologic reaction pattern associated with several underlying disorders. Few cases of PNGD have been associated with hematologic malignancies, in particular with chronic myelomonocytic leukemia (CMML), a malignant hematopoietic disorder with features of myeloproliferative neoplasm and myelodysplastic syndrome. CMML is characterized by peripheral blood monocytosis and bone marrow dysplasia, and can be supported by an acquired clonal cytogenetic abnormality most commonly in TET2, SRSF2, ASXL1, RUNX1, NRAS, and CBL. We present a patient with a papulosquamous rash on the neck, chest, and shoulders with histomorphological features on the spectrum of PNGD. Subsequent lab workup demonstrated a persistent mild monocytosis, raising concern for CMML. The patient was referred to hematology-oncology for a bone marrow biopsy, which ultimately led to her diagnosis. Cytogenic studies of the bone marrow biopsy demonstrated mutations in SRSF2, IDH2, and ASXL1, which were strongly supportive of this diagnosis. After discussion at a multidisciplinary tumor board, treatment directed at the skin eruption alone was recommended. She was started on prednisone taper and demonstrated marked clinical improvement. PNGD in the context of CMML has been scarcely reported, with only 4 prior reports in the literature. Our patient is the fifth reported case, and the fourth case with confirmed underlying SRSF2 mutation. This is likely a novel and reproducible clinical-histopathologic-molecular subtype of reactive granulomatous disease. The findings in this case strengthen the previously made association between PNGD and SRSF2-mutated CMML, and may help better define a unique recognizable subtype for dermatopathologists

    Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

    Full text link
    [EN] This paper reports the development of biodegradable active packaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the incorporation of alpha- and gamma-cyclodextrins (alpha-CD and gamma-CDs) containing oregano essential oil (OEO). Herein, both the kneading method (KM) and freeze-drying method (FDM) were first explored for the preparation of alpha-CD:OEO and gamma-CD:OEO inclusion complexes at host:guest ratios of 80:20 wt/wt and 85:15 wt/wt, respectively. The results showed that KM was the most efficient method for the encapsulation of OEO in the CDs cavity in terms of simplicity and rapidity, while it was also yielded the inclusion complexes with the highest antimicrobial and antioxidant performance. The alpha-CD:OEO and gamma-CD:OEO inclusion complexes obtained by KM were thereafter incorporated at 10, 15, 20, 25, and 30 wt% into PHBV fibres by electrospinning and annealed at 160 degrees C to produce contact transparent films. It was observed that the optimal concentration of alpha-CD:OEO and gamma-CD:OEO inclusion complexes for homogeneous and continuous film formation was attained at contents of 15 and 25 wt%, respectively. Higher antimicrobial and antioxidant activities were obtained for the gamma-CD:OEO inclusion complexes due to the greater encapsulation efficiency of OEO in gamma-CD, resulting in PHBV films with good performance for up to 15 days. This aspect, together with their improved thermal stability and mechanical strength, give interesting applications to these biopolymer films in the design of active-releasing packaging materials to maintain the physical, chemical, and microbiological characteristics of food products.The authors would like to thank the Unidad Asociada IATA-UJI "Plastics Technology" and the Spanish Ministry of Science and Innovation (MICI) project RTI 2018-097249-B-C21 and the H2020 EU project YPACK (reference number 773872) for funding. Kelly J. Figueroa-Lopez and S. Torres-Giner are recipients of a Grisolia scholarship (Ref. 0001426013N810001A201) of the Valencian Government (GVA) and a Juan de la Cierva-Incorporaci.on contract (IJCI-2016-29675) from MICI, respectively.Figueroa-Lopez, K.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.; Pastrana, L.; Fuciños, P.... (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids. 108:1-18. https://doi.org/10.1016/j.foodhyd.2020.106013S118108Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., … Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199-206. doi:10.1016/j.foodhyd.2013.03.009Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evidence-Based Complementary and Alternative Medicine, 2014, 1-14. doi:10.1155/2014/651593Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Melville, C. C., Della Vechia, J. F., de Andrade, D. J., & Fraceto, L. F. (2018). Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 8(1). doi:10.1038/s41598-018-20602-yCeccato, M., Lo Nostro, P., Rossi, C., Bonechi, C., Donati, A., & Baglioni, P. (1997). Molecular Dynamics of Novel α-Cyclodextrin Adducts Studied by 13C-NMR Relaxation. The Journal of Physical Chemistry B, 101(26), 5094-5099. doi:10.1021/jp9638447Celebioglu, A., Umu, O. C. O., Tekinay, T., & Uyar, T. (2014). Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 116, 612-619. doi:10.1016/j.colsurfb.2013.10.029Crini, G. (2014). Review: A History of Cyclodextrins. Chemical Reviews, 114(21), 10940-10975. doi:10.1021/cr500081pDas, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482-489. doi:10.1016/j.molstruc.2015.07.001De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:10.1016/s0032-9592(03)00258-9Dietrich, K., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2019). Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology, 49, 161-168. doi:10.1016/j.nbt.2018.11.004Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gao, N., Yang, J., Wu, Y., Yue, J., Cao, G., Zhang, A., … Feng, Z. (2019). β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. Reactive and Functional Polymers, 141, 100-111. doi:10.1016/j.reactfunctpolym.2019.05.001Gaur, S., Lopez, E. C., Ojha, A., & Andrade, J. E. (2018). Functionalization of Lipid‐Based Nutrient Supplement with β‐Cyclodextrin Inclusions of Oregano Essential Oil. Journal of Food Science, 83(6), 1748-1756. doi:10.1111/1750-3841.14178Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:10.1016/s0040-6031(01)00665-7Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., & Manfredini, S. (2014). Encapsulation of Satureja montana essential oil in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1-2), 147-153. doi:10.1007/s10847-014-0437-zHarada, A., & Kamachi, M. (1990). Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 23(10), 2821-2823. doi:10.1021/ma00212a039Harada, A., Li, J., & Kamachi, M. (1992). The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 356(6367), 325-327. doi:10.1038/356325a0Harada, A., Li, J., & Kamachi, M. (1993). Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 364(6437), 516-518. doi:10.1038/364516a0Harada, A., Suzuki, S., Okada, M., & Kamachi, M. (1996). Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 29(17), 5611-5614. doi:10.1021/ma960428bHedges, A. R. (1998). Industrial Applications of Cyclodextrins. Chemical Reviews, 98(5), 2035-2044. doi:10.1021/cr970014wHill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86-93. doi:10.1016/j.lwt.2012.11.011Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:10.1016/j.carbpol.2013.02.031Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., … Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22-32. doi:10.1016/j.tifs.2019.08.005Kaolaor, A., Phunpee, S., Ruktanonchai, U. R., & Suwantong, O. (2019). Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. Journal of Polymer Research, 26(2). doi:10.1007/s10965-019-1703-yKayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133(3), 641-649. doi:10.1016/j.foodchem.2012.01.040Liang, H., Yuan, Q., Vriesekoop, F., & Lv, F. (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chemistry, 135(3), 1020-1027. doi:10.1016/j.foodchem.2012.05.054Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017-1025. doi:10.1021/js950534bLu, Z., Cheng, B., Hu, Y., Zhang, Y., & Zou, G. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113(1), 17-20. doi:10.1016/j.foodchem.2008.04.042Marques, H. M. C. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal, 25(5), 313-326. doi:10.1002/ffj.2019Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227NAKANISHI, K., MASUKAWA, T., NADAI, T., YOSHII, K., OKADA, S., & MIYAJIMA, K. (1997). Sustained Release of Flufenamic Acid from a Drug-Triacetyl-.BETA.-Cyclodextrin Complex. Biological and Pharmaceutical Bulletin, 20(1), 66-70. doi:10.1248/bpb.20.66Owen, L., & Laird, K. (2018). Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology, 44(4), 414-435. doi:10.1080/1040841x.2018.1423616Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT, 91, 439-445. doi:10.1016/j.lwt.2018.01.046Ponce Cevallos, P. A., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. doi:10.1016/j.jfoodeng.2010.01.039Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201-208. doi:10.1016/j.foodres.2012.08.020Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132-140. doi:10.1016/j.tifs.2016.11.021Rusa, C. C., Bullions, T. A., Fox, J., Porbeni, F. E., Wang, X., & Tonelli, A. E. (2002). Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir, 18(25), 10016-10023. doi:10.1021/la0262452Sagiri, S. S., Anis, A., & Pal, K. (2015). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-Plastics Technology and Engineering, 55(3), 291-311. doi:10.1080/03602559.2015.1050521Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583-592. doi:10.1016/j.lwt.2014.08.046Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules, 23(5), 1161. doi:10.3390/molecules23051161Seo, E.-J., Min, S.-G., & Choi, M.-J. (2010). Release characteristics of freeze-dried eugenol encapsulated withβ-cyclodextrin by molecular inclusion method. Journal of Microencapsulation, 27(6), 496-505. doi:10.3109/02652041003681398Shan, L., Tao, E., Meng, Q., Hou, W., Liu, K., Shang, H., … Zhang, W. (2016). Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres. Drug Design, Development and Therapy, 417. doi:10.2147/dddt.s97982Sharifi-Rad, J., Sureda, A., Tenore, G., Daglia, M., Sharifi-Rad, M., Valussi, M., … Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules, 22(1), 70. doi:10.3390/molecules22010070Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268-275. doi:10.3109/08982104.2013.819888Shin, J., Kathuria, A., & Lee, Y. S. (2019). Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. Journal of Applied Polymer Science, 136(42), 48137. doi:10.1002/app.48137Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98(5), 1743-1754. doi:10.1021/cr970022cTopuz, F., & Uyar, T. (2019). Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 12, 33-38. doi:10.1016/j.coco.2018.12.002Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, C. X., & Chen, S. L. (2005). Fragrance-release Property of β-Cyclodextrin Inclusion Compounds and their Application in Aromatherapy. Journal of Industrial Textiles, 34(3), 157-166. doi:10.1177/1528083705049050Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018). Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 224, 27-36. doi:10.1016/j.jfoodeng.2017.12.020Zainuddin, S., Kamrul Hasan, S. M., Loeven, D., & Hosur, M. (2019). Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. Journal of Polymers and the Environment, 27(10), 2292-2304. doi:10.1007/s10924-019-01517-9Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. doi:10.1016/j.msec.2017.12.035Zhang, M., Wang, J., Lyu, Y., Fitriyanti, M., Hou, H., Jin, Z., … Narsimhan, G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 172, 451-458. doi:10.1016/j.colsurfb.2018.08.06

    Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake

    Full text link
    The variation of fractal dimension and entropy during a damage evolution process, especially approaching critical failure, has been recently investigated. A sudden drop of fractal dimension has been proposed as a quantitative indicator of damage localization or a likely precursor of an impending catastrophic failure. In this contribution, electromagnetic emissions recorded prior to significant earthquake are analysed to investigate whether they also present such sudden fractal dimension and entropy drops as the main catastrophic event is approaching. The pre-earthquake electromagnetic time series analysis results reveal a good agreement to the theoretically expected ones indicating that the critical fracture is approaching

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Gas exchange at whole plant level shows that a less conservative water use is linked to a higher performance in three ecologically distinct pine species

    Get PDF
    Increasing temperatures and decreasing precipitation in large areas of the planet as a consequence of global warming will affect plant growth and survival. However, the impact of climatic conditions will differ across species depending on their stomatal response to increasing aridity, as this will ultimately affect the balance between carbon assimilation and water loss. In this study, we monitored gas exchange, growth and survival in saplings of three widely distributed European pine species (Pinus halepensis, P. nigra and P. sylvestris) with contrasting distribution and ecological requirements in order to ascertain the relationship between stomatal control and plant performance. The experiment was conducted in a common garden environment resembling rainfall and temperature conditions that two of the three species are expected to encounter in the near future. In addition, gas exchange was monitored both at the leaf and at the whole-plant level using a transient-state closed chamber, which allowed us to model the response of the whole plant to increased air evaporative demand (AED). P. sylvestris was the species with lowest survival and performance. By contrast, P. halepensis showed no mortality, much higher growth (two orders of magnitude), carbon assimilation (ca. 14 fold higher) and stomatal conductance and water transpiration (ca. 4 fold higher) than the other two species. As a consequence, P. halepensis exhibited higher values of water-use efficiency than the rest of the species even at the highest values of AED. Overall, the results strongly support that the weaker stomatal control of P. halepensis, which is linked to lower stem water potential, enabled this species to maximize carbon uptake under drought stress and ultimately outperform the more water conservative P. nigra and P. sylvestris. These results suggest that under a hotter drought scenario P. nigra and P. sylvestris would very likely suffer increased mortality, whereas P. halepensis could maintain gas exchange and avoid water-induced growth limitation. This might ultimately foster an expansion of P. halepensis to higher latitudes and elevations.This work was supported by the projects ECOLPIN (AGL2011–24296) and Remedinal 3 (S2013/ MAE- 2719) of the Madrid Government, by a FPU fellowship from the Spanish Ministry of Education, Culture and Sport (FPU13/03410) to DS and by EU Marie Curie (FP7–2013-IOF-625988) fellowship to EPSC
    corecore